Silicone Oil Leakage – Detection in Freeze Dryer Systems


Lyophilization, or freeze drying as it is more commonly known, is an important process used in the stabilization of delicate pharmaceutical products. This process requires that equipment be subjected to wide swings in both temperature and pressure. Over time these variations can lead to wear in the equipment that allows the leakage of heat transfer oils into the process chamber and subsequent contamination of the product undergoing lyophilization. Detection of these fluids is therefore a critical aspect of contamination control in the process.


Pharmaceuticals, in general, are relatively delicate chemicals that are at risk of decomposition under harsh processing and storage conditions. Furthermore, the thermal and chemical lability of many pharmaceuticals makes their stabilization for long term storage problematic.

For the above reasons, freeze drying (lyophilization) of pharmaceuticals has been widely adopted as a preferred stabilization process in pharmaceutical manufacturing. Lyophilization is, by far, the gentlest route for the conversion of the liquid formulations that are the typical end product

Da |settembre 16th, 2015|Vacuum Technology|Commenti disabilitati su Silicone Oil Leakage – Detection in Freeze Dryer Systems|

De-Convolution of Complex Residual Gas Spectra at JET


At JET, fusion fuel most commonly used in the tokamak is deuterium. Purity of the fuel is vital to ensure the data obtained from plasma pulses is useful, and that pulse recipe repeatability is not compromised.

Our primary goal was to determine the purity of the fuelling gas, deuterium, and confirm that we did not have any contamination from helium (He). Analysis using our quadrupole Residual Gas Analysers (qRGA) in the conventional way was not possible due to the overlapping masses of the two species at 4 atomic mass units (amu).

Here, we present and demonstrate the approach we used to solve this problem; a complimentary technique, Threshold Ionization Mass Spectrometry (TIMS), operating the qRGA mass spectrometer in a mode allowing control over the energy of the electrons emitted within the ionization source.

Recognising the potential to identify more complex compounds which have brought uncertainty when attempting to interpret data from the torus primary vacuum vessel we have applied this technique across a broad range of gases that exhibit overlapping masses in the laboratory.



Articolo completo: De-Convolution of Complex Residual Gas Spectra at JET.pdf


T. Coyne1, S. Davies2, N. Balshaw1, A. Miller1, C. Robertson2, C. Whitehead1 and EFDA JET contributors*
1EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxon. OX14 3DB. UK
2Plasma & Gas Analysis Division, Hiden Analytical Ltd. 420 Europa Boulevard, Warrington. UK
*See annex of F Romanelli et al, “Overview of JET Results”, (Proc. 22nd IAEA Fusion Energy Conference, Geneva, Switzerland (2008))
Per maggiori informazioni
Aldo Conti


Da |settembre 16th, 2015|Vacuum Technology|Commenti disabilitati su De-Convolution of Complex Residual Gas Spectra at JET|

I sensori utilizzati nella spettrometria di massa

La spettrometria di massa è uno dei metodi più comunemente utilizzati per analizzare la composizione di sostanze chimiche attraverso la misura della pressione parziale nel vuoto. Uno spettrometro di massa analizza componenti in fase gassosa ma è pur sempre possibile analizzare solidi o liquidi se vengono evaporati in un sistema idoneo.

Una delle applicazioni più comuni è la ricerca e la misura delle perdite di un sistema o di un prodotto per verificarne la funzionalità e la sua qualità nel tempo.

Pfeiffer Vacuum utilizza principalmente tre tecnologie per i propri rilevatori di perdite:

■ sensore a membrana di quarzo

■ spettrometro di massa a deflessione magnetica

■ spettrometro di massa a quadrupolo